Analysing the Multiple Timescale Recurrent Neural Network for Embodied Language Understanding
نویسندگان
چکیده
How the human brain understands natural language and how we can exploit this understanding for building intelligent grounded language systems is open research. Recently, researchers claimed that language is embodied in most – if not all – sensory and sensorimotor modalities and that the brain’s architecture favours the emergence of language. In this chapter we investigate the characteristics of such an architecture and propose a model based on the Multiple Timescale Recurrent Neural Network, extended by embodied visual perception, and tested in a real world scenario. We show that such an architecture can learn the meaning of utterances with respect to visual perception and that it can produce verbal utterances that correctly describe previously unknown scenes. In addition we rigorously study the timescale mechanism (also known as hysteresis) and explore the impact of the architectural connectivity in the language acquisition task.
منابع مشابه
Embodied Language Understanding with a Multiple Timescale Recurrent Neural Network
How the human brain understands natural language and what we can learn for intelligent systems is open research. Recently, researchers claimed that language is embodied in most – if not all – sensory and sensorimotor modalities and that the brain’s architecture favours the emergence of language. In this paper we investigate the characteristics of such an architecture and propose a model based o...
متن کاملInteractive Language Understanding with Multiple Timescale Recurrent Neural Networks
Natural language processing in the human brain is complex and dynamic. Models for understanding, how the brain’s architecture acquires language, need to take into account the temporal dynamics of verbal utterances as well as of action and visual embodied perception. We propose an architecture based on three Multiple Timescale Recurrent Neural Networks (MTRNNs) interlinked in a cell assembly tha...
متن کاملContinuous Timescale Long-Short Term Memory Neural Network for Human Intent Understanding
Understanding of human intention by observing a series of human actions has been a challenging task. In order to do so, we need to analyze longer sequences of human actions related with intentions and extract the context from the dynamic features. The multiple timescales recurrent neural network (MTRNN) model, which is believed to be a kind of solution, is a useful tool for recording and regene...
متن کاملRepresenting Compositionality based on Multiple Timescales Gated Recurrent Neural Networks with Adaptive Temporal Hierarchy for Character-Level Language Models
A novel character-level neural language model is proposed in this paper. The proposed model incorporates a biologically inspired temporal hierarchy in the architecture for representing multiple compositions of language in order to handle longer sequences for the character-level language model. The temporal hierarchy is introduced in the language model by utilizing a Gated Recurrent Neural Netwo...
متن کاملAdaptive Learning of Linguistic Hierarchy in a Multiple Timescale Recurrent Neural Network
Recent research has revealed that hierarchical linguistic structures can emerge in a recurrent neural network with a sufficient number of delayed context layers. As a representative of this type of network the Multiple Timescale Recurrent Neural Network (MTRNN) has been proposed for recognising and generating known as well as unknown linguistic utterances. However the training of utterances per...
متن کامل